
CS 391L Machine Learning WB Spring 2025

Final Project Ideas
Lecturer: Inderjit Dhillon Date: Mar 24, 2025

Project 1: Exploring and Interpreting Attention Patterns in Needle-in-a-Haystack
Tasks

Overview: This project investigates how transformer-based language models use attention to find a small, tar-
geted piece of information (the “needle”) hidden inside a large amount of irrelevant text (the “haystack”). This
task is a key benchmark for testing a model’s ability to retrieve specific information from within its context window
[Goo2x, Kam2x, Tow2x]. Recent models like Google’s Gemini 1.5 Pro have shown nearly perfect recall even with
context windows of up to one million tokens across text, video, and audio [Goo2x]. However, research indicates
that retrieval performance can drop when multiple needles are embedded or when the needle is placed at certain
positions within the context [Goo2x, Tow2x].

Objectives:

• Implement the needle-in-a-haystack task using a transformer-based model.

• Visualize attention patterns from various layers and heads for different context lengths and needle positions.

• Analyze the relationship between attention weights and successful needle retrieval.

• Study the effect of multiple needles on attention patterns and retrieval accuracy.

• Compare attention behaviors across different model architectures (if feasible).

Potential Methodology: A potential approach involves setting up the needle-in-a-haystack task using tools such
as the needlehaystack package [Kam2x] or a custom implementation. Experiments can be performed using the
Python transformers library to access and inspect the attention matrices during model inference. Visualization
techniques, such as heatmaps and network graphs, can be employed to illustrate which parts of the input the
model focuses on [CVM19, 3Bl2x]. Experiments can be designed to systematically vary the length of the haystack,
the position of the needle (e.g., beginning, middle, end), and the number of needles. Quantitative analysis may
involve comparing the average attention weight on the needle against that on the surrounding haystack, while
qualitative analysis can involve visually inspecting the attention maps to identify potential patterns or biases in
how the model attends to the relevant information.

Project 2: Building a Retrieval-Augmented Generation (RAG) System for Course
Material Question Answering

Description: This project explores the development of a question answering system based on the Retrieval-
Augmented Generation (RAG) framework, which integrates external course material into the response generation
process. RAG systems can enhance large language models (LLMs) by allowing them to access domain-specific in-
formation that may not be fully covered during training [Coh2x, Dat2xb, K2v2x, Med2xc, dee2xb, Int2x, IBM2x].

1



2 CS 391L: Machine Learning WB

Grounding LLM responses in retrieved, relevant information can help improve accuracy and reduce the risk of
generating factually incorrect or nonsensical answers. A typical RAG system includes several components: a doc-
ument store for course materials, a chunker to segment documents, an embedder to create vector representations,
a retriever to identify the most relevant segments, a prompt builder to combine the user query with the retrieved
context, and the LLM to generate the final answer [Wil2x, Pro2xb, Ton2x, Med2xb, Dja2x, Tim2x]. Open-source
libraries and platforms such as Langchain and deepset AI Platform offer useful tools to simplify the process of
building and deploying RAG systems [dee2xb, Dja2x, Lan2x, Dat2xa].

Potential Objectives:

• Process and index the provided course materials for efficient retrieval.

• Implement a retrieval mechanism to locate relevant content based on user queries.

• Construct effective prompts by combining the user query with the retrieved context for the LLM.

• Utilize a chosen LLM to generate answers based on the retrieved information.

• Evaluate the performance of the RAG system using appropriate metrics.

• Explore different retrieval strategies or LLM configurations to potentially optimize performance.

Potential Methodology: A potential approach can begin with preprocessing the course materials (e.g., lecture
notes, recordings, assignments) by converting documents into plain text. Experiments can be performed to imple-
ment a chunking strategy that divides the text into smaller, semantically coherent segments [K2v2x, Wil2x, Dja2x].
Next, an embedding model can be selected to create vector representations of these text chunks, which can
then be indexed in a vector store for efficient similarity search [Wil2x, Dja2x, Tim2x]. When a user poses
a question, the same embedding model can be applied to generate a vector representation of the query, and
a retrieval mechanism can be used to fetch the top-k most relevant text chunks based on semantic similarity
[Pro2xb, Ton2x, Med2xb, Dja2x]. These retrieved segments may then be combined with the original query to
construct a prompt for the LLM [Ton2x, Tim2x], which in turn generates an answer based on the provided con-
text [Ton2x, Med2xb, Dja2x, Tim2x]. Finally, the system’s performance can be evaluated using metrics such as
retrieval precision, recall, and measures of answer relevance and faithfulness. Additionally, experiments can ex-
plore different retrieval algorithms, embedding models, prompt templates, and LLM configurations to assess their
impact on overall system performance.

Project 3: Exploring Tokenization Strategies for C++ Code LM

Description: This project explores various tokenization strategies specifically designed for C++ code language
model (LM). Tokenization—the process of breaking a continuous stream of characters into meaningful units (to-
kens)—is a crucial first step in many text and code processing pipelines [Sta2x, Gee2x, Ari2x, Med2xa, arX2x].
The way C++ code is tokenized can significantly affect downstream training of machine learning models on code
[Ari2x, Med2xa, arX2x]. C++ presents unique challenges for tokenization due to its complex grammar, which in-
cludes overloaded operators (e.g., >> that can denote a right-shift or the closing of nested templates), preprocessor
directives, and intricate syntax rules [Sta2x, Res2x]. Basic tokenization methods based on whitespace and delim-
iters might not suffice and could lead to ambiguities or mis-parsed code. More advanced tokenization techniques,
common in natural language processing for handling rare words and out-of-vocabulary terms, might be adapted
to improve the handling of long C++ identifiers or uncommon coding patterns [Res2x]. Given the impact that
tokenization choices have on the representation and subsequent processing of C++ code.



Final Project Ideas 3

Potential Objectives:

• Implement and compare various tokenization strategies for C++ code.

• Analyze the tokens generated by each strategy on a diverse set of C++ code samples.

• Investigate how each strategy handles complex C++ syntax, including operators, templates, and preprocessor
directives.

• Evaluate the impact of different tokenization strategies on downstream performance in language model tasks.

Potential Methodology: A suggested approach is to first collect a diverse set of C++ source code samples
that represent various coding styles and language features. One may then implement several tokenization meth-
ods—ranging from simple regular expression-based techniques [Gee2x] to more sophisticated methods that mimic
the approaches used by C++ compilers or some adaptations of sub-word tokenization algorithms (e.g., Byte-Pair
Encoding or WordPiece). The effectiveness of these methods can be compared using several metrics, such as the
total number of tokens generated, the accuracy in identifying and separating syntactic elements (e.g., operators,
keywords, identifiers, literals), and the handling of complex constructs like nested templates or preprocessor direc-
tives [Sta2x]. A qualitative analysis of the token sequences may help assess their granularity and correctness—for
example, whether multi-character operators like >> are treated as a single token or split into two. Finally, training
a small language model using each tokenization strategy and evaluating its performance on simple C++ code tasks
could provide insights into the downstream impact of the tokenization choice.

Project 4: Designing and Implementing Evaluation Metrics for Assessing Halluci-
nations in LLM-Generated Text

Description: This project addresses the challenge of hallucinations in large language models (LLMs)—instances
where the generated text, despite appearing coherent and plausible, contains factual errors or fabricated informa-
tion. Hallucinations can undermine the reliability of LLM outputs, particularly in critical applications. Therefore,
it is important to develop methods that can accurately evaluate and quantify hallucinations. The project will begin
with a review of existing evaluation metrics that detect hallucinations in LLM-generated text. These techniques
include analyzing log probabilities of generated sequences, measuring semantic similarity against a ground truth,
employing automated fact verification against external knowledge bases, and even using other LLMs as evaluators
[Fid2x, Dee2xa, Pro2xa, Ama2x, AWS2x, Con2x]. Based on this literature review, the project can either propose
novel evaluation metrics or combine existing ones to provide a more nuanced assessment of hallucinations. The
proposed metrics can focus on more nuanced aspects like consistency with provided context and grounding in
external sources.

Potential Objectives:

• Research and analyze existing evaluation metrics for hallucinations in LLM-generated text.

• Design one or more evaluation metrics tailored for specific types of LLM output (e.g., question answering,
summarization).

• Evaluate the hallucination rate of one or more LLMs on a chosen dataset using the implemented metrics.

• Compare the performance of the newly implemented metrics with established ones.

• Explore potential correlations between different metrics and human evaluations of text quality and factuality.



4 CS 391L: Machine Learning WB

Potential Methodology: A potential approach could start with a review of the current literature on hallucination
evaluation in LLMs. One might select a specific natural language processing task—such as question answering or
text summarization—and obtain or curate a dataset with corresponding ground truth information. Experiments
can then be performed by implementing several existing hallucination detection techniques, such as:

• Calculating log probabilities of generated text.

• Assessing semantic similarity between generated text and ground truth (e.g., using cosine similarity).

• Employing automated fact-checking methods.

Based on these evaluations try to propose either modified or a new metric for hallucination detection. After
implementing the metrics, one can run selected LLMs on the dataset and use the new metrics to quantify halluci-
nations. Finally, the results can be compared with those obtained from established metrics, and further analysis
may explore the correlation between metric scores and human judgments of quality and factuality.

References

[3Bl2x] 3Blue1Brown. Visualizing attention, a transformer’s heart. https://www.3blue1brown.com/lessons/
attention, 202x. Video.

[Ama2x] Amazon Science Blog. New tool, dataset help detect hallucina-
tions in large language models. https://www.amazon.science/blog/

new-tool-dataset-help-detect-hallucinations-in-large-language-models, 202x.

[Ari2x] Arize AI Blog. Tokenization. https://arize.com/blog-course/tokenization/, 202x.

[arX2x] arXiv. The impact of tokenization on large language models. https://arxiv.org/html/2402.01035v2,
202x.

[AWS2x] AWS Machine Learning Blog. Reducing hallucinations in large language models with custom
intervention using amazon bedrock agents. https://aws.amazon.com/blogs/machine-learning/

reducing-hallucinations-in-large-language-models-with-custom-intervention-using-amazon-bedrock-agents/,
202x.

[Coh2x] Cohere Blog. Rag architecture. https://cohere.com/blog/rag-architecture, 202x.

[Con2x] Confident AI Docs. Metrics - hallucination. https://docs.confident-ai.com/docs/

metrics-hallucination, 202x.

[CVM19] Kevin Clark, Elena Voita, and Christopher D Manning. What does bert look at? an analysis of bert’s
attention. arXiv preprint arXiv:1906.04341, 2019.

[Dat2xa] Data Science Toolkit. Question answering using retrieval augmented generation (rag + q&a). https:

//www.ds-toolkit.com/assets/533862c7-ae3e-4338-9fe1-0e45fe50b436, 202x.

[Dat2xb] Databricks Glossary. Retrieval augmented generation (rag). https://www.databricks.com/glossary/
retrieval-augmented-generation-rag, 202x.

[Dee2xa] Deepchecks Blog. Llm hallucination detection and mitigation. https://www.deepchecks.com/

llm-hallucination-detection-and-mitigation-best-techniques/, 202x.

https://www.3blue1brown.com/lessons/attention
https://www.3blue1brown.com/lessons/attention
https://www.amazon.science/blog/new-tool-dataset-help-detect-hallucinations-in-large-language-models
https://www.amazon.science/blog/new-tool-dataset-help-detect-hallucinations-in-large-language-models
https://arize.com/blog-course/tokenization/
https://arxiv.org/html/2402.01035v2
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-large-language-models-with-custom-intervention-using-amazon-bedrock-agents/
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-large-language-models-with-custom-intervention-using-amazon-bedrock-agents/
https://cohere.com/blog/rag-architecture
https://docs.confident-ai.com/docs/metrics-hallucination
https://docs.confident-ai.com/docs/metrics-hallucination
https://www.ds-toolkit.com/assets/533862c7-ae3e-4338-9fe1-0e45fe50b436
https://www.ds-toolkit.com/assets/533862c7-ae3e-4338-9fe1-0e45fe50b436
https://www.databricks.com/glossary/retrieval-augmented-generation-rag
https://www.databricks.com/glossary/retrieval-augmented-generation-rag
https://www.deepchecks.com/llm-hallucination-detection-and-mitigation-best-techniques/
https://www.deepchecks.com/llm-hallucination-detection-and-mitigation-best-techniques/


Final Project Ideas 5

[dee2xb] deepset AI Docs. Retrieval augmented generation (rag) question answering. https://docs.cloud.

deepset.ai/docs/generative-question-answering, 202x.

[Dja2x] Django Stars Blog. Rag question answering with python. https://djangostars.com/blog/

rag-question-answering-with-python/, 202x.

[Fid2x] Fiddler AI Blog. Detect hallucinations using llm metrics. https://www.fiddler.ai/blog/

detect-hallucinations-using-llm-metrics, 202x.

[Gee2x] GeeksforGeeks. Tokenizing a string in c++. https://www.geeksforgeeks.org/

tokenizing-a-string-cpp/, 202x.

[Goo2x] Google Cloud. The needle in the haystack test and how gemini pro
solves it. https://cloud.google.com/blog/products/ai-machine-learning/

the-needle-in-the-haystack-test-and-how-gemini-pro-solves-it, 202x.

[IBM2x] IBM Research Blog. What is retrieval-augmented generation? https://research.ibm.com/blog/

retrieval-augmented-generation-RAG, 202x.

[Int2x] Intersystems Resources. Retrieval augmented generation. https://www.intersystems.com/

resources/retrieval-augmented-generation/, 202x.

[K2v2x] K2view Blog. What is retrieval-augmented generation. https://www.k2view.com/

what-is-retrieval-augmented-generation, 202x.

[Kam2x] G. Kamradt. Llmtest needleinahaystack, 202x. GitHub repository.

[Lan2x] Langchain Documentation. Build a retrieval augmented generation (rag) app: Part 1. https://python.
langchain.com/docs/tutorials/rag/, 202x.

[Med2xa] Medium Article. Demystifying transformers tokenizers. https://medium.com/@weidagang/

demystifying-transformers-tokenizers-961430c43ae6, 202x.

[Med2xb] Medium Article. Understanding rag evolution, components, im-
plementation, and applications. https://medium.com/@sandyeep70/

understanding-rag-evolution-components-implementation-and-applications-ecf72b778d15,
202x.

[Med2xc] Medium Article. Understanding the rag architecture model. https://medium.com/@hamipirzada/

understanding-the-rag-architecture-model-a-deep-dive-into-modern-ai-c81208afa391,
202x.

[Pro2xa] ProArch Blog. All about the hallucination metric in large language models (llms). https://www.

proarch.com/blog/all-about-the-hallucination-metric-in-large-language-models-llms/,
202x.

[Pro2xb] Prompting Guide. Research on rag. https://www.promptingguide.ai/research/rag, 202x.

[Res2x] Restack Article. Tokenization knowledge answer: Tokenize words c++ cat ai. https://www.restack.
io/p/tokenization-knowledge-answer-tokenize-words-cpp-cat-ai, 202x.

[Sta2x] Stack Overflow. C++ tokenization. https://stackoverflow.com/questions/23445199/

c-tokenization, 202x.

https://docs.cloud.deepset.ai/docs/generative-question-answering
https://docs.cloud.deepset.ai/docs/generative-question-answering
https://djangostars.com/blog/rag-question-answering-with-python/
https://djangostars.com/blog/rag-question-answering-with-python/
https://www.fiddler.ai/blog/detect-hallucinations-using-llm-metrics
https://www.fiddler.ai/blog/detect-hallucinations-using-llm-metrics
https://www.geeksforgeeks.org/tokenizing-a-string-cpp/
https://www.geeksforgeeks.org/tokenizing-a-string-cpp/
https://cloud.google.com/blog/products/ai-machine-learning/the-needle-in-the-haystack-test-and-how-gemini-pro-solves-it
https://cloud.google.com/blog/products/ai-machine-learning/the-needle-in-the-haystack-test-and-how-gemini-pro-solves-it
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://www.intersystems.com/resources/retrieval-augmented-generation/
https://www.intersystems.com/resources/retrieval-augmented-generation/
https://www.k2view.com/what-is-retrieval-augmented-generation
https://www.k2view.com/what-is-retrieval-augmented-generation
https://python.langchain.com/docs/tutorials/rag/
https://python.langchain.com/docs/tutorials/rag/
https://medium.com/@weidagang/demystifying-transformers-tokenizers-961430c43ae6
https://medium.com/@weidagang/demystifying-transformers-tokenizers-961430c43ae6
https://medium.com/@sandyeep70/understanding-rag-evolution-components-implementation-and-applications-ecf72b778d15
https://medium.com/@sandyeep70/understanding-rag-evolution-components-implementation-and-applications-ecf72b778d15
https://medium.com/@hamipirzada/understanding-the-rag-architecture-model-a-deep-dive-into-modern-ai-c81208afa391
https://medium.com/@hamipirzada/understanding-the-rag-architecture-model-a-deep-dive-into-modern-ai-c81208afa391
https://www.proarch.com/blog/all-about-the-hallucination-metric-in-large-language-models-llms/
https://www.proarch.com/blog/all-about-the-hallucination-metric-in-large-language-models-llms/
https://www.promptingguide.ai/research/rag
https://www.restack.io/p/tokenization-knowledge-answer-tokenize-words-cpp-cat-ai
https://www.restack.io/p/tokenization-knowledge-answer-tokenize-words-cpp-cat-ai
https://stackoverflow.com/questions/23445199/c-tokenization
https://stackoverflow.com/questions/23445199/c-tokenization


6 CS 391L: Machine Learning WB

[Tim2x] Timeplus Blog. Building a rag-based question/answer system using ollama and timeplus. https:

//www.timeplus.com/post/rag-based-question-answer-system, 202x.

[Ton2x] Tonic AI Docs. Rag components summary. https://docs.tonic.ai/validate/about-rag-metrics/
tonic-validate-rag-components-summary, 202x.

[Tow2x] Towards Data Science. The needle in a haystack test. https://medium.com/towards-data-science/
the-needle-in-a-haystack-test-a94974c1ad38, 202x.

[Wil2x] WillowTree Apps Blog. Retrieval augmented generation. https://www.willowtreeapps.com/craft/

retrieval-augmented-generation, 202x.

https://www.timeplus.com/post/rag-based-question-answer-system
https://www.timeplus.com/post/rag-based-question-answer-system
https://docs.tonic.ai/validate/about-rag-metrics/tonic-validate-rag-components-summary
https://docs.tonic.ai/validate/about-rag-metrics/tonic-validate-rag-components-summary
https://medium.com/towards-data-science/the-needle-in-a-haystack-test-a94974c1ad38
https://medium.com/towards-data-science/the-needle-in-a-haystack-test-a94974c1ad38
https://www.willowtreeapps.com/craft/retrieval-augmented-generation
https://www.willowtreeapps.com/craft/retrieval-augmented-generation

