
CS391L: Machine Learning WB
Stochastic Optimization

Inderjit S. Dhillon
UT Austin

March 30, 2025

Stochastic Gradient Descent

Large-scale Problems

Machine learning: usually minimize the training loss

min
w
{ 1
N

N∑
n=1

ℓ(wTxn, yn)} := f (w) (linear model)

min
w
{ 1
N

N∑
n=1

ℓ(hw (xn), yn)} := f (w) (general hypothesis)

ℓ: loss function (e.g., ℓ(a, b) = (a− b)2)

Gradient descent:
w ← w − η ∇f (w)︸ ︷︷ ︸

main computation

In general, f (w) = 1
N

∑N
n=1 fn(w),

each fn(w) only depends on (xn, yn)

Large-scale Problems

Machine learning: usually minimize the training loss

min
w
{ 1
N

N∑
n=1

ℓ(wTxn, yn)} := f (w) (linear model)

min
w
{ 1
N

N∑
n=1

ℓ(hw (xn), yn)} := f (w) (general hypothesis)

ℓ: loss function (e.g., ℓ(a, b) = (a− b)2)

Gradient descent:
w ← w − η ∇f (w)︸ ︷︷ ︸

main computation

In general, f (w) = 1
N

∑N
n=1 fn(w),

each fn(w) only depends on (xn, yn)

Stochastic gradient

Gradient:

∇f (w) =
1

N

N∑
n=1

∇fn(w)

Each gradient computation needs to go through all training samples

slow when millions of samples

Faster way to compute “approximate gradient”?

Use stochastic sampling:

Sample a small subset B ⊆ {1, · · · ,N}
Estimated gradient

∇f (w) ≈ 1

|B|
∑
n∈B

∇fn(w)

|B|: batch size

Stochastic gradient

Gradient:

∇f (w) =
1

N

N∑
n=1

∇fn(w)

Each gradient computation needs to go through all training samples

slow when millions of samples

Faster way to compute “approximate gradient”?

Use stochastic sampling:

Sample a small subset B ⊆ {1, · · · ,N}
Estimated gradient

∇f (w) ≈ 1

|B|
∑
n∈B

∇fn(w)

|B|: batch size

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

Input: training data {xn, yn}Nn=1

Initialize w (zero or random)

For t = 1, 2, · · ·
Sample a small batch B ⊆ {1, · · · ,N}
Update parameter

w ← w − ηt
1

|B|
∑
n∈B

∇fn(w)

Extreme case: |B| = 1 ⇒ Sample one training data at a time

Logistic Regression by SGD

Logistic regression:

min
w

1

N

N∑
n=1

log(1 + e−ynwT xn)︸ ︷︷ ︸
fn(w)

SGD for Logistic Regression

Input: training data {xn, yn}Nn=1

Initialize w (zero or random)

For t = 1, 2, · · ·
Sample a batch B ⊆ {1, · · · ,N}
Update parameter

w ← w − ηt
1

|B|
∑
i∈B

−ynxn
1 + eynwT xn︸ ︷︷ ︸

∇fn(w)

Why SGD works?

Stochastic gradient is an unbiased estimator of full gradient:

E [
1

|B|
∑
n∈B
∇fn(w)] =

1

N

N∑
n=1

∇fn(w)

= ∇f (w)

Each iteration updated by

gradient + zero-mean noise

Stochastic gradient descent

In gradient descent, η (step size) is a fixed constant

Can we use fixed step size for SGD?

SGD with fixed step size cannot converge to global/local minimizers

If w∗ is the minimizer, ∇f (w∗) = 1
N

∑N
n=1∇fn(w∗)=0,

but
1

|B|
∑
n∈B
∇fn(w∗)̸=0 if B is a subset

(Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent

In gradient descent, η (step size) is a fixed constant

Can we use fixed step size for SGD?

SGD with fixed step size cannot converge to global/local minimizers

If w∗ is the minimizer, ∇f (w∗) = 1
N

∑N
n=1∇fn(w∗)=0,

but
1

|B|
∑
n∈B
∇fn(w∗)̸=0 if B is a subset

(Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent, step size

To make SGD converge:

Step size should decrease to 0

ηt → 0

Usually with polynomial rate: ηt ≈ t−a with constant a > 0

Step decay of learning rate

Learning rate scheduling

Other cyclic learning rate scheduling strategies

Stochastic gradient descent vs Gradient descent

Stochastic gradient descent:

pros:
cheaper computation per iteration
faster convergence in the beginning

cons:
less stable, slower final convergence
hard to tune step size

(Figure from https://medium.com/@ImadPhd/

gradient-descent-algorithm-and-its-variants-10f652806a3)

https://medium.com/@ImadPhd/gradient-descent-algorithm-and-its-variants-10f652806a3
https://medium.com/@ImadPhd/gradient-descent-algorithm-and-its-variants-10f652806a3

Momentum

Gradient descent: only using current gradient (local information)

Momentum: use previous gradient information

The momentum update rule:

vt = βvt−1 + (1− β)∇f (wt)

wt+1 = wt − αvt

β ∈ [0, 1): discount factors, α: step size

Equivalent to using moving average of gradient:

vt = (1− β)∇f (wt) + β(1− β)∇f (wt−1) + β2(1− β)∇f (wt−2) + · · ·

Momentum gradient descent

Momentum gradient descent

Initialize w0, v0 = 0

For t = 1, 2, · · ·
Compute vt ← βvt−1 + (1− β)∇f (wt)
Update wt+1 ← wt − αvt

α: learning rate

β: discount factor (β = 0 means no momentum)

Momentum stochastic gradient descent

Optimizing f (w) = 1
N

∑N
i=1 fi (w)

Momentum stochastic gradient descent

Initialize w0, v0 = 0

For t = 1, 2, · · ·
Sample an i ∈ {1, · · · ,N}
Compute vt ← βvt−1 + (1− β)∇fi (wt)
Update wt+1 ← wt − αvt

α: learning rate

β: discount factor (β = 0 means no momentum)

Nesterov accelerated gradient

Using the “look-ahead” gradient

vt = βvt−1 + α∇f (wt − βvt−1)

wt+1 = wt − vt

(Figure from https://towardsdatascience.com)

https://towardsdatascience.com

Why momentum works?

Reduce variance of gradient estimator for SGD

Even for gradient descent, it’s able to speed up convergence in some
cases:

Adagrad: Adaptive updates (2010)

SGD update: same step size for all variables

Adaptive algorithms: each dimension can have a different step size

Adagrad

Initialize w0

For t = 1, 2, · · ·
Sample an i ∈ {1, · · · ,N}
Compute g t ← ∇fi (wt)
G t

j ← G t−1
j + (g t

j)
2 for all j = 1, . . . d

Update wt+1 ← wt − η√
G t
i +ϵ

g t
i

η: step size (constant)
ϵ: small constant to avoid division by 0

Adagrad

For each dimension i , we have observed T samples g1
i , · · · , g t

i

Standard deviation of gi :√∑
t′(g

t′
i)2

t
=

√
G t
i

t

Assume step size is η/
√
t, then the update becomes

w t+1
i ← w t

i −
η√
t

√
t√
G t
i

g t
i

Adam: Momentum + Adaptive updates (2015)

Adam

Initialize w0,m0 = 0, v0 = 0,

For t = 1, 2, · · ·
Sample an i ∈ {1, · · · ,N}
Compute gt ← ∇fi (wt)
mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g 2
t

m̂t ← mt/(1− βt
1)

v̂t ← vt/(1− βt
2)

Update wt ← wt−1 − α · m̂t/(
√

v̂t + ϵ)

Batch size selection

Larger batch size ⇒ more computation per update, less noise

Usually, choose batch size large enough that

Fits in (GPU) memory
Can fully utilize the computation resource

For example, 512 batch size for ImageNet training on a standard GPU.

Large batch training

What if we want to train a model with hundreds or thousands of GPUs

Data parallel distributed computing:

Increasing the batch size linearly with number of devices.

⇒ Large batch training

Problem of large batch training

Tend to converge to models with lower test accuracy when using very
large batch size

Sharp vs wide local minimum

Large-batch SGD/Adam:

Usually converge to a sharp local minimum
(not enough inherent noise in SGD)
Harder to generalize to test data

Figure from (Keskar et al., 2017)

A simple but practical solution: learning rate scaling

Var[1
|B|

∑
n∈B gn] ≈ O(1

|B|)

Batch size ↑, learning rate ↑
LR scaling: LR as O(

√
|B|) or O(|B|)

However, LR has to be bounded for convergence (as for GD)

LR ≤ O(1/L) L : Lipchitz constant

Can’t increase LR without limit

A simple but practical solution: learning rate scaling

Var[1
|B|

∑
n∈B gn] ≈ O(1

|B|)

Batch size ↑, learning rate ↑
LR scaling: LR as O(

√
|B|) or O(|B|)

However, LR has to be bounded for convergence (as for GD)

LR ≤ O(1/L) L : Lipchitz constant

Can’t increase LR without limit

Non-uniform updates between different layers

Some layer becomes the bottleneck of LR

Another solution

Use Layer-wise Adaptive LR Scaling

w (i) ← w (i) − η
∥w (i)∥
∥g (i)∥

g (i),

where (·)(i) means the i-th layer of neural network

LARS: g is the stochastic gradient

LAMB: g is the Adam update

(“Large Batch Optimization for Deep Learning: Training BERT in 76
minutes, ICLR 2020”)

Google and Nvidia both use LAMB to train BERT within 1 minute
(4096 TPU / 2048 GPU)

Conclusions

Stochastic gradient descent

Variants of SGD used in neural network training.

Questions?

