
CS391L: Machine Learning WB
Transformers and Attention

Inderjit Dhillon
UT Austin

April 7, 2025



Last time: Attention + RNN in NMT

(Figure from https://towardsdatascience.com/

neural-machine-translation-nmt-with-attention-mechanism)

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism
https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism


Transformer



Transformer

An architecture that relies entirely on attention without using
CNN/RNN

A brief history:

“Attention Is All You Need” (Vaswani et al., 2017)
First Transformer for machine translation

BERT (Jacob et al., 2018)
Tranformer + Pretraining achieves SOTA on many other NLP tasks.

Vision Transformer (Dosovitskiy et al., 2020)
Transformer outperforms ResNet on ImageNet



Transformer for machine translation

Pass all input tokens to encoder simultaneously

Passing through several Transformer blocks

(Vaswani et al., 2017)



Encoder and Decoder

Self attention layer: the main architecture used in Transformer

Decoder: will have another attention layer to help it focus on relevant
parts of input sentences.



Encoder

Each word has a corresponding “latent vector” (initially the word
embedding for each word)

Each layer of encoder:

Receive a list of vectors as input
Passing these vectors to a self-attention layer
Then passing them into a feed-foward layer
Output a list of vectors



Self-attention layer

Main idea: The actual meaning of each word may be related to other
words in the sentence

The actual meaning (latent vector) of each word is a weighted
(attention) combination of other words (latent vectors) in the sentence



Self-attention layer

Input latent vectors: x1, . . . , xn
Self-attention parameters: WQ ,WK ,W V (weights for query, key,
value)

For each word i , compute

Query vector: qi = xiWQ

Key vector: ki = xiW K

Value vector: vi = xiW V



Self-attention layer

For each word i , compute the scores to determine how much focus to
place on other input words

The attention score for word j to word i : qT
i kj



Self-attention layer

For each word i , the output vector∑
j

sijvj , si = softmax(qT
i k1, . . . ,qT

i kn)



Matrix form

Q = XWQ , K = XWK , V = XW V , Z = softmax(QKT )V



Multiple heads

Multi-headed attention: use multiple set of (key , value, query) weights

Each head will output a vector Zi



Multiply with weight matrix to reshape

Gather all the outputs Z1, . . . ,Zk

Multiply with a weight matrix to reshape

Then pass to the next fully connected layer



Overall architecture



Position Encoding

The above architecture ignores the sequential information

Add a positional encoding vector to each xi (according to i)



Performance gain on NMT

(Figure from Vaswani et al., 2017)



Unsupervised pretraining for NLP



Motivation

There is a huge amount of unlabeled NLP data available but very little
labeled data

Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?



Learning word embeddings

Use large (unlabeled) corpus to learn a useful word representation
Learn a vector for each word based on the corpus
Hopefully the vector represents some semantic meaning
Can be used for many tasks

Replace the word embedding matrix for DNN models for
classification/translation

Two different perspectives but led to similar results:
Glove (Pennington et al., 2014)
Word2vec (Mikolov et al., 2013)



Context information

Given a large text corpus, how to learn low-dimensional features to
represent a word?

For each word wi , define the “context” of the word as the words
surrounding it in an L-sized window:

wi−L−2,wi−L−1,wi−L, · · · ,wi−1︸ ︷︷ ︸
context of wi

,wi ,wi+1, · · · ,wi+L︸ ︷︷ ︸
context of wi

,wi+L+1, · · ·

Get a collection of (word, context) pairs, denoted by D.



Examples

(Figure from http://mccormickml.com/2016/04/19/

word2vec-tutorial-the-skip-gram-model/)

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Use bag-of-word model

Idea 1: Use the bag-of-word model to “describe” each word

Assume we have context words c1, · · · , cd in the corpus, compute

#(w , ci ) := number of times the pair (w , ci ) appears in D

For each word w , form a d-dimensional (sparse) vector to describe w

#(w , c1), · · · ,#(w , cd),



PMI/PPMI Representation

Similar to TF-IDF: Need to consider the frequency of each word and
each context

Instead of using co-ocurrence count #(w , c), we can define pointwise
mutual information:

PMI (w , c) = log(
P̂(w , c)

P̂(w)P̂(c)
) = log

#(w , c)|D|
#(w)#(c)

,

#(w) =
∑

c #(w , c): number of times word w occurred in D
#(c) =

∑
w #(w , c): number of times context c occurred in D

|D|: number of pairs in D

Positive PMI (PPMI) usually achieves better performance:

PPMI(w , c) = max(PMI(w , c), 0)

MPPMI: a n by d word feature matrix, each row is a word and each
column is a context



PPMI Matrix



Generalized Low-rank Embedding

SVD basis will minimize

min
W ,V

∥MPPMI −WV T∥2F

Glove (Pennington et al., 2014)

Negative sampling (less weights to 0s in MPPMI )
Adding bias term:

MPPMI ≈ WV T + bweT + ebT
c

Use W as the word embedding matrix



Word2vec (Mikolov et al., 2013)

A neural network model for learning word embeddings
Main idea:

Predict the target words based on the neighbors (CBOW)
Predict neighbors given the target words (Skip-gram)



CBOW (Continuous Bag-of-Word model)

Predict the target words based on the neighbors



Skip-gram

Predict neighbors using target word



More on skip-gram

Learn the probability P(wt+j |wt): the probability to see wt+j in target
word wt ’s neighborhood

Every word has two embeddings:

vi serves as the role of target
ui serves as the role of context

Model probability as softmax:

P(o|c) = eu
T
o vc∑W

w=1 e
uTw vc



Results

The low-dimensional embeddings are (often) meaningful:

(Figure from https://www.tensorflow.org/tutorials/word2vec)

https://www.tensorflow.org/tutorials/word2vec


Contextual embedding



Contextual world representation

The semantic meaning of a word should depend on its context

Solution: Train a model to extract contextual representations on text
corpus



CoVe (McCann et al., 2017)

Key idea: Train a standard neural machine translation model

Take the encoder directly as contextualized word embeddings

Problems:

Translation requires paired (labeled) data
The embeddings are tailored to particular translation corpuses



Language model pretraining task

Predict the next word given the prefix
Can be defined on any unlabeled document



ELMo (Peter et al., 2018)

Key ideas:

Train a foward and backward LSTM language model on large corpus
Use the hidden states for each token to compute a vector representation
of each word
Replace the word embedding by Elmo’s embedding (with fixed Elmo’s
LSTM weights)



ELMo results



BERT

Key idea: replace LSTM by Transformer

Define the generated pretraining task by masked language model

Two pretraining tasks

Finetune both BERT weights and task-dependent model weights for
each task



BERT pretraining loss

Masked language model: predicting each word by the rest of sentence

Next sentence prediction: the model receives pairs of sentences as
input and learns to predict if the second sentence is the subsequent
sentence in the original document.



BERT finetuning

Keep the pretrained Transformers

Replace or append a layer for the final task

Train the whole model based on the task-dependent loss



BERT results

BERT base: 110M parameters, BERT large: 340M parameters


