Inderjit Dhillon
UT Austin

April 7, 2025

Decoder —n

| Attention layer

addition

000
t

[I T 1

multiplication multiplication
softmax sotnas sotran

¢ o o o —o
| I I l |

i 0?0 0?0 0?. O?O

Encoder o —

(Figure from https://towardsdatascience.com/

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism
https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism

Transformer

@ An architecture that relies entirely on attention without using
CNN/RNN

@ A brief history:

o “Attention Is All You Need” (Vaswani et al., 2017)

First Transformer for machine translation
e BERT (Jacob et al., 2018)

Tranformer + Pretraining achieves SOTA on many other NLP tasks.
o Vision Transformer (Dosovitskiy et al., 2020)

Transformer outperforms ResNet on ImageNet

@ Pass all input tokens to encoder simultaneously

@ Passing through several Transformer blocks

OUTPUT | | am a student

~

I

L
|

INPUT | Je suis étudiant

(Vaswani et al., 2017)

@ Self attention layer: the main architecture used in Transformer

@ Decoder: will have another attention layer to help it focus on relevant
parts of input sentences.

DECODER f

Feed Forward)

ENCODER 4

1 4

(Feed Forward J (Encoder-Decoder Attention)
4 7'y

(Self-Attention J (Self-Attention)
vy
T

f

@ Each word has a corresponding “latent vector” (initially the word
embedding for each word)
@ Each layer of encoder:

Receive a list of vectors as input

e Passing these vectors to a self-attention layer
e Then passing them into a feed-foward layer
o Output a list of vectors

encooersz \\o J)
t t
4 4
ENCODER #1 | |
Feed Forward Feed Forward
Neorol Network Neoral Network
- - -

[Self-Attention J

Iy Iy
T T
x X2

Thinking Machines

@ Main idea: The actual meaning of each word may be related to other
words in the sentence

@ The actual meaning (latent vector) of each word is a weighted
(attention) combination of other words (latent vectors) in the sentence

Layer:| 5 §| Attention:| Input - Input

Cross.
the_
street_
because_
it_

was

too,

tire
d

The_

animal_
didn_

@ Input latent vectors: xq,..., X,

o Self-attention parameters: W, WK, WV (weights for query, key,

value)

@ For each word i/, compute

o Query vector: q; = x;WQ®
o Key vector: k; = x; WK
o Value vector: v; = x;WV

Input

Thinking

Machines

x [x- [
Queries oI R @ wa
Keys « [T ez [T WK
Values v v wy

@ For each word i, compute the scores to determine how much focus to
place on other input words

o The attention score for word j to word i: q,” k;

Input Thinking Machines
Embedding x [x: [
Queries q [q: [T
Keys ki [T ke [
Values vi LT v L1
Score qie ki= qie ko=

@ For each word i, the output

> sivi, i
j

vector

= softmax(q,-Tkl, Sy q,'Tkn)

Input Thinking
bedding x: [
Queries qi D:\:‘
Keys kI
Values Vi Djj
Score qie ki=
Divide by 8 (Vdx)
Softmax
Softmax
X s
Value
Sum z D:D

Machines

V2

Q=XW?, K=XxWK v=XWV Z=softmax(QK™)V
X

- - o
EE.EHX B =H;H softmax(EEH\/‘;@)EEH
X w v HH

EREE I - 0

e Multi-headed attention: use multiple set of (key, value, query) weights

@ Each head will output a vector Z;

ATTENTION HEAD #0

= HH

X

S

Wo@

Wo¥

ATTENTION HEAD #1
Q
TT wie

K1 ATTENTION
Wik HEAD #0

Vi

X

-

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION
HEAD #1 HEAD #7

HH HH

o Gather all the outputs Z1,..., Zk

o Multiply with a weight matrix to reshape

@ Then pass to the next fully connected layer

1) Concatenate all the attention heads

S EREE S SEEESEEEEESS SRR

3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN

- HHH

2) Multiply with a weight
matrix W* that was trained
jointly with the model

X

1) This is our 2) We embed 3) Split into 8 heads.
input sentence* each word* We multiply X or
R with weight matrices

Wo@
X WK

Thinking

W@
*1n all encoders other than #0, WK
we don’t need embedding. wyv
We start directly with the output
of the encoder right below this one
R
HHH A
WK

4) Calculate attention
using the resulting
Q/K/V matrices

Qo
K

5) Concatenate the resulting ~ matrices,

then multiply with weight matrix W

produce the output of the layer

to

@ The above architecture ignores the sequential information

@ Add a positional encoding vector to each x; (according to i)

C

ENCODER #1 ' ' ‘ DECODER #1
C ENCODER #0 ' ' ‘ DECODER #0
EMBEDDING
WITH TIME
siGNAL xi [T % [T T] x [T
POSTaoNAL 4 I o t O
+ + +
emeepoinGs . [- [x» I
INPUT Je suis étudiant

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
oce ENDE EN-FR ENDE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-109 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%
MoE [32] 26.03 40.56 2.0-10° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630 41.16 1.8-10*° 1.1.10%
ConvS2S Ensemble [9] 2636 41.29 7.7-101 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-101

(Figure from Vaswani et al., 2017)

Unsupervised pretraining for NLP

@ There is a huge amount of unlabeled NLP data available but very little
labeled data

@ Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?

@ Use large (unlabeled) corpus to learn a useful word representation
o Learn a vector for each word based on the corpus
e Hopefully the vector represents some semantic meaning
o Can be used for many tasks
o Replace the word embedding matrix for DNN models for
classification /translation
@ Two different perspectives but led to similar results:
o Glove (Pennington et al., 2014)
o Word2vec (Mikolov et al., 2013)

- body part
X . I’ food
city \h N3/ A
Tty * X travel 30 %
TP A
-~
.,‘—' "A
< (‘

s relative

o Given a large text corpus, how to learn low-dimensional features to
represent a word?

@ For each word w;, define the “context” of the word as the words
surrounding it in an L-sized window:

Wi—L-2, Wi—L—l,l/Vi—Lu T, Wify Wi,i/Vi+1, s Wi, Wik 41,00

TV
context of w; context of w;

@ Get a collection of (word, context) pairs, denoted by D.

Source Text

fox jumps over the lazy dog. ==

The fox jumps over the lazy dog. ==

|Thelquick-foxljumpslover the lazy dog. ==

The|quick|brown-jumps| over|the lazy dog. ==

(Figure from http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/)

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

@ Idea 1: Use the bag-of-word model to “describe” each word

@ Assume we have context words ¢y, - -+, cg in the corpus, compute
#(w, ¢;) := number of times the pair (w, ¢;) appears in D
e For each word w, form a d-dimensional (sparse) vector to describe w

#(Wa C1)7 to 7#(Wa Cd)7

(quick) (fox) (jump)
[< Cy
(the) w,
‘ d-dimensional
(brown) w, ‘ #(w, c) feature vector

for “brown”

(fox) Wp

@ Similar to TF-IDF: Need to consider the frequency of each word and
each context

@ Instead of using co-ocurrence count #(w, c¢), we can define pointwise
mutual information:

. 2 I 205 2]
PMI(w.€) = log(5 0 V510 = '8 Hw)d(o)”

o #(w)=>"_#(w,c): number of times word w occurred in D
o #(c) =73, #(w,c): number of times context ¢ occurred in D
o |D|: number of pairs in D

@ Positive PMI (PPMI) usually achieves better performance:
PPMI(w, ¢) = max(PMI(w, c),0)

o MPPMI 5 1 by d word feature matrix, each row is a word and each
column is a context

(quick) (fox) (jump)

(the) w,

d-dimensional
(brown) w; PPMI(w, C) feature vector
for “brown”

(fox) Wi

@ SVD basis will minimize

min [|[MPPME_ v T2
w,v

)

@ Glove (Pennington et al., 2014)

o Negative sampling (less weights to 0s in MPPM!)
e Adding bias term:

MPPMU~ WVT + b,e" + eb!

@ Use W as the word embedding matrix

@ A neural network model for learning word embeddings

@ Main idea:

o Predict the target words based on the neighbors (CBOW)
o Predict neighbors given the target words (Skip-gram)

contextword ta rget word jonte“ word

N

like natural language

i like natural |language processing

processing

i like| naturallanguage processing |

i like natural |language processing

@ Predict the target words based on the neighbors

INPUT PROJECTION OUTPUT

w(t-2)
w(t-1)
| SUM
— w(t)
w(t+1)
w(t+2)

@ Predict neighbors using target word

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
w(t)

w(t+1)

w(t+2)

m]

=

o Learn the probability P(w;yj|w:): the probability to see w;j in target
word w;'s neighborhood
@ Every word has two embeddings:

e v; serves as the role of target
e u; serves as the role of context

@ Model probability as softmax:

eug—vc
P(olc) = SW el
w=

The low-dimensional embeddings are (often) meaningful:

spain \
Italy \Hndtid

Germany _— Roms
Berlin
Turkey \
Ankara

Russia ——
Moscow
Canada ———————— Ottawa

Jepan ——— e

vietnam ——————_ jHanoi

walked

swimming China ———————— Beijing

Male-Female Verb tense Country-Capital

(Figure from https://www.tensorflow.org/tutorials/word2vec)

https://www.tensorflow.org/tutorials/word2vec

Contextual embedding

@ The semantic meaning of a word should depend on its context

[0.9, -0.2, 1.6, .. [-1.9, -0.4, 0.1, ..]

!

open a bank account on the river bank

@ Solution: Train a model to extract contextual representations on text

corpus
t +

Contextuahzed word embeddlngs

r f f F F 7

the movie was terribly exciting !

@ Key idea: Train a standard neural machine translation model
o Take the encoder directly as contextualized word embeddings

@ Problems:

e Translation requires paired (labeled) data
e The embeddings are tailored to particular translation corpuses

a) i b) Task-specific Model
Translation
; A)
t - | |
Encoder —» { Decoder ‘ i Encoder Encoder
A A

|) |
Word 1 Word] Word
Vectors H ~ Vectors = Vectors

@ Predict the next word given the prefix
@ Can be defined on any unlabeled document

0.1% | Aardvark
Possible classes:
All English words 10% | Improvisation

0% | Zyzzyva

FENN + Softmax)

Output [
Layer

s é‘
t t t
S ?‘» ?‘» ?‘

Embedding [| I

ol

o Key ideas:

e Train a foward and backward LSTM language model on large corpus

o Use the hidden states for each token to compute a vector representation
of each word

o Replace the word embedding by EImo’s embedding (with fixed Elmo’s
LSTM weights)

Forward Language Model Backward Language Model
2. GG §E&@
Layer #2

t t t t t t

.) . .

BN el el
Layer #1 w -w

f f f

Embedding I o EEEE I EEEE | =i= =]

] o1

t Let

INCREASE
TASK PREVIOUS SOTA Our ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 | 81.1 85.8 4.7/24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/172%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £0.19 || 90.15 9222+ 0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 547+ 0.5 3.3/6.8%

o Key idea: replace LSTM by Transformer
@ Define the generated pretraining task by masked language model
@ Two pretraining tasks

@ Finetune both BERT weights and task-dependent model weights for
each task

@ Masked language model: predicting each word by the rest of sentence

@ Next sentence prediction: the model receives pairs of sentences as
input and learns to predict if the second sentence is the subsequent
sentence in the original document.

[W"][w&][vfa]Q[I]
wowcas |]]]

softmax
[Classification Layer: Fully-connected layer + GELU + Norm

i f I I f
Lo) (e] [e) (o) [o]
] I

Transformer encoder

Emboduhg]‘ T I
Cw J Cwe J [Cw] (s] [we]

w1 w2 W3 Wa Ws

@ Keep the pretrained Transformers
@ Replace or append a layer for the final task
@ Train the whole model based on the task-dependent loss

‘ Pre-trained ‘ ‘ Task-specific ‘
Classificati ‘ Start { Text |Extram |]-| H Linear
[stan | Ppremise [oelim | is | Extract H——| }+{ Linear |
[stat [Text1 [peim | Text2 | Extact H—|
Similarity Linear J
[stat [Textz [peim [Text1 [Exact |}—|
[stan | context | peim | Answer1 [Extact H—-| J+{ Linear

Multiplecholce‘ Start ‘

Context | Deim | Answer2 | Extact |]..{

|—>| Linear

Context Answer N

Linear

Special start token

‘ ‘ Special delimiter token ‘

‘ Special end token

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 904 36.0 73.3 849 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 823 56.0 75.1
BERTEgAsE 84.6/83.4 71.2 90.5 93.5 521 85.8 88.9 66.4 79.6
BERTLArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

o BERT base: 110M parameters, BERT large

: 340M parameters

