CS391L: Machine Learning WB

Transformers and Attention

Inderjit Dhillon UT Austin

April 7, 2025

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Last time: Attention + RNN in NMT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(Figure from https://towardsdatascience.com/

Transformer

Transformer

- An architecture that relies entirely on attention without using CNN/RNN
- A brief history:
 - "Attention Is All You Need" (Vaswani et al., 2017) First Transformer for machine translation
 - BERT (Jacob et al., 2018)

Tranformer + Pretraining achieves SOTA on many other NLP tasks.

• Vision Transformer (Dosovitskiy et al., 2020)

Transformer outperforms ResNet on ImageNet

Transformer for machine translation

- Pass all input tokens to encoder simultaneously
- Passing through several Transformer blocks

(Vaswani et al., 2017)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Encoder and Decoder

- Self attention layer: the main architecture used in Transformer
- Decoder: will have another attention layer to help it focus on relevant parts of input sentences.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Encoder

- Each word has a corresponding "latent vector" (initially the word embedding for each word)
- Each layer of encoder:
 - Receive a list of vectors as input
 - Passing these vectors to a self-attention layer
 - Then passing them into a feed-foward layer
 - Output a list of vectors

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Main idea: The actual meaning of each word may be related to other words in the sentence
- The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent vectors) in the sentence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Input latent vectors: x_1, \ldots, x_n
- Self-attention parameters: W^Q, W^K, W^V (weights for query, key, value)
- For each word *i*, compute
 - Query vector: $\boldsymbol{q}_i = \boldsymbol{x}_i W^Q$
 - Key vector: $\boldsymbol{k}_i = \boldsymbol{x}_i W^K$
 - Value vector: $\mathbf{v}_i = \mathbf{x}_i W^V$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- For each word *i*, compute the scores to determine how much focus to place on other input words
 - The attention score for word j to word i: $\boldsymbol{q}_i^T \boldsymbol{k}_i$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

• For each word *i*, the output vector

$$\sum_{j} s_{ij} \boldsymbol{v}_{j}, \quad \boldsymbol{s}_{i} = \operatorname{softmax}(\boldsymbol{q}_{i}^{\mathsf{T}} \boldsymbol{k}_{1}, \dots, \boldsymbol{q}_{i}^{\mathsf{T}} \boldsymbol{k}_{n})$$

Matrix form

$$Q = XW^Q, \ K = XW^K, \ V = XW^V, \ Z = \operatorname{softmax}(QK^T)V$$

softmax $\left(\begin{array}{c} Q & K^{\mathsf{T}} \\ \hline & & \\ \hline & & \\ \hline & & \\ \sqrt{d_k} \end{array} \right) \begin{array}{c} \mathsf{V} \\ \hline \\ \hline \\ \end{array}$

・ロト・日本・日本・日本・日本・日本

Multiple heads

- Multi-headed attention: use multiple set of (key, value, query) weights
- Each head will output a vector Z_i

Multiply with weight matrix to reshape

- Gather all the outputs Z_1, \ldots, Z_k
- Multiply with a weight matrix to reshape
- Then pass to the next fully connected layer

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

3) The result would be the ${\mathbb Z}$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

(日) (四) (日) (日) (日)

Overall architecture

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Position Encoding

- The above architecture ignores the sequential information
- Add a positional encoding vector to each x_i (according to i)

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1 \cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$			
Transformer (big)	28.4	41.8	$2.3 \cdot$	$2.3\cdot 10^{19}$		

(Figure from Vaswani et al., 2017)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Unsupervised pretraining for NLP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

• There is a huge amount of unlabeled NLP data available but very little labeled data

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Can we use large amount of unlabeled data to obtain meaningful representations of words/sentences?

Learning word embeddings

- Use large (unlabeled) corpus to learn a useful word representation
 - Learn a vector for each word based on the corpus
 - Hopefully the vector represents some semantic meaning
 - Can be used for many tasks
 - Replace the word embedding matrix for DNN models for classification/translation
- Two different perspectives but led to similar results:
 - Glove (Pennington et al., 2014)
 - Word2vec (Mikolov et al., 2013)

Context information

- Given a large text corpus, how to learn low-dimensional features to represent a word?
- For each word w_i , define the "context" of the word as the words surrounding it in an *L*-sized window:

$$W_{i-L-2}, W_{i-L-1}, \underbrace{W_{i-L}, \cdots, W_{i-1}}_{\text{context of } w_i}, \underbrace{W_i, \underbrace{W_{i+1}, \cdots, W_{i+L}}_{\text{context of } w_i}, W_{i+L+1}, \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Get a collection of (word, context) pairs, denoted by D.

(Figure from http://mccormickml.com/2016/04/19/ word2vec-tutorial-the-skip-gram-model/)

Use bag-of-word model

- Idea 1: Use the bag-of-word model to "describe" each word
- Assume we have context words c_1, \cdots, c_d in the corpus, compute

 $\#(w, c_i) :=$ number of times the pair (w, c_i) appears in D

• For each word w, form a d-dimensional (sparse) vector to describe w

$$\#(w,c_1),\cdots,\#(w,c_d),$$

PMI/PPMI Representation

- Similar to TF-IDF: Need to consider the frequency of each word and each context
- Instead of using co-ocurrence count #(w, c), we can define pointwise mutual information:

$$\mathsf{PMI}(w,c) = \log(rac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}(c)}) = \lograc{\#(w,c)|D|}{\#(w)\#(c)},$$

- $#(w) = \sum_{c} #(w, c)$: number of times word w occurred in D• $#(c) = \sum_{w} #(w, c)$: number of times context c occurred in D• |D|: number of pairs in D
- Positive PMI (PPMI) usually achieves better performance:

$$\mathsf{PPMI}(w, c) = \max(\mathsf{PMI}(w, c), 0)$$

• *M*^{PPMI}: a *n* by *d* word feature matrix, each row is a word and each column is a context

PPMI Matrix

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• SVD basis will minimize

$$\min_{W,V} \|M^{\mathsf{PPMI}} - WV^{\mathsf{T}}\|_F^2$$

- Glove (Pennington et al., 2014)
 - Negative sampling (less weights to 0s in M^{PPMI})
 - Adding bias term:

$$M^{\text{PPMI}} \approx WV^T + \boldsymbol{b}_w \boldsymbol{e}^T + \boldsymbol{e} \boldsymbol{b}_c^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Use W as the word embedding matrix

Word2vec (Mikolov et al., 2013)

- A neural network model for learning word embeddings
- Main idea:
 - Predict the target words based on the neighbors (CBOW)
 - Predict neighbors given the target words (Skip-gram)

CBOW (Continuous Bag-of-Word model)

• Predict the target words based on the neighbors

• Predict neighbors using target word

More on skip-gram

- Learn the probability P(w_{t+j}|w_t): the probability to see w_{t+j} in target word w_t's neighborhood
- Every word has two embeddings:
 - v_i serves as the role of target
 - *u_i* serves as the role of context
- Model probability as softmax:

$$P(o|c) = rac{e^{u_o^T v_c}}{\sum_{w=1}^W e^{u_w^T v_c}}$$

Results

The low-dimensional embeddings are (often) meaningful:

(Figure from https://www.tensorflow.org/tutorials/word2vec)

(日) (四) (日) (日) (日)

Contextual embedding

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Contextual world representation

The semantic meaning of a word should depend on its context

Solution: Train a model to extract contextual representations on text corpus

CoVe (McCann et al., 2017)

- Key idea: Train a standard neural machine translation model
- Take the encoder directly as contextualized word embeddings
- Problems:
 - Translation requires paired (labeled) data
 - The embeddings are tailored to particular translation corpuses

Language model pretraining task

- Predict the next word given the prefix
- Can be defined on any unlabeled document

ELMo (Peter et al., 2018)

- Key ideas:
 - Train a foward and backward LSTM language model on large corpus
 - Use the hidden states for each token to compute a vector representation of each word
 - Replace the word embedding by Elmo's embedding (with fixed Elmo's LSTM weights)

Forward Language Model

Backward Language Model

・ ロマ・ 4 回 マ・ 4 回 マ・ 4 回 マックタン

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + baseline	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

BERT

- Key idea: replace LSTM by Transformer
- Define the generated pretraining task by masked language model
- Two pretraining tasks
- Finetune both BERT weights and task-dependent model weights for each task

BERT pretraining loss

- Masked language model: predicting each word by the rest of sentence
- Next sentence prediction: the model receives pairs of sentences as input and learns to predict if the second sentence is the subsequent sentence in the original document.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

BERT finetuning

- Keep the pretrained Transformers
- Replace or append a layer for the final task
- Train the whole model based on the task-dependent loss

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• BERT base: 110M parameters, BERT large: 340M parameters